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У статті розглядається актуальна науково-практична проблема моніторингу екологічного стану поверхневих вод України 
в умовах інтенсивного антропогенного навантаження, військового стану та техногенних катастроф, зокрема наслідків підриву 
греблі Каховської ГЕС. Метою роботи є теоретичне обґрунтування та розробка методології створення гібридної інтелектуаль-
ної системи, що поєднує методи дистанційного зондування Землі, новітні архітектури комп’ютерного зору та генеративний 
штучний інтелект. В основу дослідження покладено використання мультиспектральних супутникових знімків Sentinel-2 місії 
Copernicus, які завдяки високій просторовій та часовій роздільній здатності дозволяють оперативно фіксувати динаміку змін 
якості води на великих територіях. Для кількісної оцінки стану водних об’єктів обґрунтовано використання спеціалізова-
них спектральних індексів: NDCI для детекції процесів евтрофікації та цвітіння водоростей, а також NDTI для моніторингу 
каламутності води, спричиненої переміщенням донних відкладень та твердих частинок. Особливу увагу в роботі приділено 
застосуванню каналів Red Edge для підвищення точності ідентифікації біомаси фітопланктону у складних оптичних серед-
овищах. Наукова новизна дослідження полягає у застосуванні архітектури Vision Transformer для задач семантичної сегмен-
тації водних поверхонь, що розглядається як ефективна альтернатива класичним згортковим нейронним мережам. Детально 
описано математичний апарат механізму багатологолової самоуваги, який дозволяє моделі враховувати глобальний контекст. 
Для автоматизації процесу екологічної звітності та інтерпретації різнорідних даних розроблено інтелектуальний модуль на 
базі великих мовних моделей з використанням технології генерації, доповненої пошуком RAG. Практична значущість роботи 
буде полягати в тому, що система дозволить отримувати верифіковані дані про екологічні ризики без необхідності фізич-
ної присутності дослідників у небезпечних зонах, що є пріоритетним завданням в умовах мінної небезпеки та бойових дій. 
Ключові слова: екологічний моніторинг, дистанційне зондування Землі, штучний інтелект, якість води, Каховська ГЕС.

Hybrid system for monitoring the ecological state of surface waters based on intelligent analysis of remote sensing data. 
Maksymenko V.

The article discusses the topical scientific and practical problem of monitoring the ecological state of surface waters in Ukraine under 
conditions of intense anthropogenic pressure, martial law, and man-made disasters, in particular the consequences of the destruction 
of the Kakhovka Hydroelectric Power Plant dam. The aim of the work is to theoretically substantiate and develop a methodology for 
creating a hybrid intelligent system that combines remote sensing methods, the latest computer vision architectures, and generative 
artificial intelligence. The research is based on the use of multispectral satellite images from the Copernicus Sentinel-2 mission, 
which, thanks to their high spatial and temporal resolution, allow for the rapid recording of changes in water quality over large areas. 
For the quantitative assessment of the state of water bodies, the use of specialized spectral indices is justified: NDCI for the detection 
of eutrophication and algal blooms, as well as NDTI for monitoring water turbidity caused by the movement of bottom sediments 
and solid particles. Particular attention is paid to the use of Red Edge channels to improve the accuracy of phytoplankton biomass 
identification in complex optical environments. The scientific novelty of the research lies in the application of the Vision Transformer 
architecture for semantic segmentation of water surfaces, which is considered an effective alternative to classical convolutional neural 
networks. The mathematical apparatus of the multi-head self-attention mechanism, which allows the model to take into account the 
global context, is described in detail. To automate the process of environmental reporting and interpretation of heterogeneous data, an 
intelligent module based on large language models has been developed using generation technology supplemented by RAG search. 
The practical significance of the work will be that the system will allow obtaining verified data on environmental risks without the need 
for researchers to be physically present in dangerous areas, which is a priority task in conditions of mine danger and hostilities. The 
mathematical apparatus of the multi-headed self-attention mechanism, which allows the model to take into account the global context, 
is described in detail. To automate the process of environmental reporting and interpretation of heterogeneous data, an intelligent 
module based on large language models has been developed using generation technology supplemented by RAG search. The practical 
significance of the work will be that the system will allow verified data on environmental risks to be obtained without the need for 
researchers to be physically present in dangerous areas, which is a priority task in conditions of mine danger and combat operations. 
Key words: environmental monitoring, remote sensing, artificial intelligence, water quality, Kakhovka Hydroelectric Power Plant.
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ГІБРИДНА СИСТЕМА МОНІТОРИНГУ…Максименко В. О.

Постановка проблеми. Сучасна парадигма 
глобальної екологічної безпеки переживає фунда-
ментальну трансформацію, зумовлену критичним 
загостренням водно-ресурсних проблем. Водні еко-
системи, які виступають ключовим регулятором 
біосферних процесів та основою життєзабезпечення 
людства, зазнають безпрецедентного антропоген-
ного тиску. У глобальному вимірі це проявляється 
через евтрофікацію водойм, хімічне забруднення 
стійкими органічними сполуками та важкими мета-
лами, а також через фізичну деградацію гідрологіч-
них мереж внаслідок нераціонального водокористу-
вання та кліматичних змін. Проте в умовах України 
ця загальносвітова проблематика набула катастро-
фічних масштабів та специфічних рис, зумовлених 
повномасштабною військовою агресією, яка триває 
з 2022 року. Військові дії спричинили пряме фізичне 
знищення гідротехнічної інфраструктури, хімічне 
забруднення водних об’єктів продуктами вибухів та 
паливно-мастильними матеріалами, а також унемож-
ливили доступ до значних територій для проведення 
традиційного екологічного контролю [1].

Традиційна система державного екологічного 
моніторингу, яка базується на мережі стаціонарних 
постів спостереження та регламентних лабораторних 
аналізах, виявилася недостатньо гнучкою та стійкою 
до нових викликів. Основні недоліки існуючого під-
ходу полягають у його дискретності: вимірювання 
проводяться з низькою частотою (щомісяця або 
щокварталу в кращому випадку) та мають точковий 
характер, що не дозволяє реконструювати цілісну 
просторово-часову динаміку поширення забрудню-
вачів у межах великих річкових басейнів. Крім того, 
лабораторні методи є ресурсномісткими, дорогими та 
вимагають фізичної присутності фахівців на об’єкті, 
що в умовах мінної небезпеки та активних бойових 
дій є неприпустимим ризиком для життя персоналу.

У відповідь на ці виклики наукова спільнота 
все активніше звертається до методів дистанцій-
ного зондування Землі. Сучасні супутникові угру-
повання, такі як Sentinel-2 (місія Copernicus) та 
Landsat-8/9 (NASA/USGS), забезпечують отримання 
мультиспектральних даних з високою просторовою 
та часовою роздільною здатністю, що теоретично 
дозволяє здійснювати безперервний моніторинг яко-
сті поверхневих вод на будь-якій території. Однак, 
перехід до дистанційних методів породжує нову 
проблему – проблему «великих даних» (Big Data). 
Обсяги інформації, що генеруються супутниками, 
перевищують фізичні можливості експертів з руч-
ного дешифрування. Існуючі автоматизовані алго-
ритми, що базуються на емпіричних спектральних 
індексах (NDCI, NDTI), часто дають хибні резуль-
тати в складних оптичних умовах (каламутні води, 
атмосферний серпанок, сонячні відблиски) і не 
здатні враховувати контекстуальну інформацію.

Більше того, існує розрив між кількісними 
даними, які надає супутник, та якісними управ-

лінськими рішеннями, які мають прийматися на їх 
основі. Екологічний менеджмент потребує не про-
сто «картинки», а верифікованого звіту, що пояснює 
причини аномалій, прогнозує наслідки та пропонує 
заходи реагування з посиланням на нормативну базу. 
Вирішення цієї проблеми лежить у площині інтегра-
ції передових методів комп’ютерного зору (зокрема, 
Vision Transformers) для аналізу зображень та гене-
ративного штучного інтелекту (Large Language 
Models) для семантичного аналізу, що і становить 
сутність запропонованої у даній роботі концепції.

Актуальність дослідження. Актуальність роз-
робки гібридної інтелектуальної системи моніто-
рингу визначається конвергенцією кількох кри-
тичних факторів: екологічного, технологічного, 
нормативно-правового та безпекового.

Екологічний та безпековий вимір. Руйнування 
Каховської ГЕС 6 червня 2023 року стало найбіль-
шою техногенною катастрофою в Європі за останні 
десятиліття. Ця подія призвела до миттєвої втрати 
18 км3 води, осушення водосховища площею понад 
2000 км2 та радикальної трансформації екосистем 
пониззя Дніпра [2]. Наслідки катастрофи включа-
ють масштабне забруднення Дніпровсько-Бузької 
естуарної системи, загибель біоресурсів, загрозу 
вторинного забруднення через вітрову ерозію дон-
них відкладень, насичених токсикантами, та зміни 
мікроклімату регіону [3]. В умовах, коли доступ нау-
ковців до зони лиха обмежений, дистанційне зонду-
вання стає єдиним джерелом об’єктивної інформації. 
Запропонована система дозволить ретроспективно 
проаналізувати динаміку катастрофи та забезпечити 
проактивний моніторинг процесів відновлення або 
деградації екосистем у довгостроковій перспективі.

Нормативно-правовий вимір. Курс України щодо 
європейської інтеграції вимагає впровадження поло-
жень Водної рамкової директиви ЄС, яка передба-
чає перехід до басейнового принципу управління 
та досягнення «доброго екологічного стану» водних 
масивів. Це вимагає впроваджувати сучасні інстру-
менти моніторингу, здатних оперувати великими 
масивами даних та забезпечувати високу точність 
оцінки біологічних та гідроморфологічних показ-
ників. Розроблювана система спрямована на авто-
матизацію цих процесів, що сприятиме гармонізації 
національної системи екологічного контролю з євро-
пейськими стандартами.

Технологічний вимір. Світова наука переживає 
бум застосування штучного інтелекту в науках про 
Землю. Публікаційна активність у сфері застосу-
вання глибокого навчання (Deep Learning) для ана-
лізу якості води досягла піку у 2023–2024 роках. 
Перехід від класичних згорткових мереж (CNN) до 
трансформерних архітектур (ViT) відкриває нові 
можливості для розпізнавання складних патернів на 
супутникових знімках. Водночас, розвиток техноло-
гії RAG дозволяє вирішити головну проблему гене-
ративного ШІ – «галюцинації», роблячи можливим 
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його використання у відповідальних сферах, таких 
як екологія. Україна має унікальну можливість стати 
полігоном для апробації цих передових технологій 
в реальних кризових умовах, створивши продукт 
подвійного призначення.

Зв’язок авторського доробку із важли-
вими науковими та практичними завданнями. 
Представлена у статті концептуальна розробка без-
посередньо інтегрована у контекст пріоритетних 
напрямів розвитку науки і техніки України та відпо-
відає нагальним потребам національної безпеки та 
оборони в екологічній сфері.

Робота корелює із завданнями Стратегії екологіч-
ної безпеки та адаптації до зміни клімату на період до 
2030 року в частині удосконалення Державної сис-
теми моніторингу довкілля. Пропонована архітек-
тура системи може стати прототипом для цифрової 
платформи національного рівня, забезпечуючи інте-
роперабельність даних між різними відомствами.

Дослідження виконується на стику екології та 
інформаційних технологій, що відповідає сучасним 
трендам міждисциплінарності. Авторський під-
хід передбачає створення методології, яка поєднує 
знання про біогеохімічні цикли водних екосистем 
з алгоритмами комп’ютерного зору, що сприяє роз-
витку нового напрямку – цифрової екології.

В умовах повоєнної відбудови України система 
дозволить проводити швидкий скринінг територій 
для виявлення найбільш постраждалих ділянок, прі-
оритезувати заходи з ревіталізації річок та оціню-
вати збитки, завдані державі-агресором, з формуван-
ням доказової бази міжнародного зразка.

Аналіз останніх досліджень і публікацій. 
Проведений систематичний огляд наукової літера-
тури за період 2020–2025 років дозволив виявити 
ключові тенденції та еволюцію методів дистанцій-
ного моніторингу якості води. Дослідження у цій 
сфері можна класифікувати за трьома основними 
напрямками: удосконалення спектральних індексів, 
застосування машинного навчання (ML/DL) та інте-
грація великих мовних моделей (LLM).

Історично першим і найбільш поширеним підхо-
дом є використання спектральних індексів – алге-
браїчних комбінацій значень відбиття у різних діа-
пазонах спектра.

1.	 NDCI (Normalized Difference Chlorophyll 
Index) – розроблений Mishra & Mishra (2012), цей 
індекс став стандартом для оцінки евтрофікації [4]. 
Останні дослідження підтверджують його високу 
ефективність для даних Sentinel-2 завдяки наявності 
каналів «червоного краю» (Red Edge), що дозволяє 
корелювати значення індексу з концентрацією хло-
рофілу, навіть у каламутних водах. Формула індексу 
базується на різниці коефіцієнтів відбиття при 
705 нм та 665 нм.

2.	 NDTI (Normalized Difference Turbidity Index) – 
запропонований Lacaux et al. (2007) для оцінки кала-
мутності, цей індекс використовує контраст між 

червоним та зеленим каналами спектра. Він широко 
застосовується для моніторингу наслідків повеней [5].

Попри простоту, індексні методи мають обме-
ження: вони чутливі до атмосферних впливів і часто 
вимагають локальної калібровки за даними польо-
вих вимірювань, яких часто бракує

З 2015 року домінуючим методом аналізу супут-
никових зображень були згорткові нейронні мережі 
(CNN), такі як U-Net. Однак, роботи 2023–2024 років 
вказують на їх фундаментальний недолік – локаль-
ність рецептивного поля, що ускладнює моделю-
вання довготривалих просторових залежностей, 
необхідних для аналізу протяжних річкових систем.

Революційним кроком стала поява архітектури 
Vision Transformer, представленої Dosovitskiy et al. 
(2021). ViT обробляє зображення як послідовність 
патчів, використовуючи механізм самоуваги (Self-
Attention), що дозволяє враховувати глобальний кон-
текст.

•	 Ryan Rad (2024) продемонстрував, що ViT 
перевершує CNN у задачах класифікації мультиспек-
тральних даних при обмеженому розмірі вибірки.

•	 Дослідження Tayal et al. (2024) показали ефек-
тивність моделі Geo-ViT-LSTM для прогнозування 
річкового стоку, що підтверджує перспективність 
трансформерів у гідрології.

•	 Огляди 2024 року вказують на зростаючу 
популярність гібридних моделей (Swin Transformer), 
які поєднують ієрархічну структуру CNN з гнучкі-
стю трансформерів для задач семантичної сегмента-
ції водних об’єктів.

Застосування генеративного ШІ (LLM) в еколо-
гії є новим трендом 2024–2025 років. Дослідники 
(Garigliotti, 2024; Bruzzone et al., 2024) вказують 
на потенціал LLM для автоматизації звітності, але 
наголошують на проблемі фактологічних помилок.
Технологія Retrieval-Augmented Generation (RAG), 
яка передбачає доповнення генерації пошуком 
у зовнішніх базах знань, розглядається як єдиний 
надійний шлях впровадження LLM у наукові дослі-
дження.Проте, комплексні системи, які б поєднували 
аналіз супутникових зображень (ViT) з генерацією 
пояснень через RAG для задач моніторингу води, 
у проаналізованій літературі практично відсутні, що 
відкриває простір для наукового пошуку.

Виділення невирішених раніше частин загаль-
ної проблеми, котрим присвячується означена 
стаття. Незважаючи на значний прогрес у окремих 
технологічних доменах, існує низка критичних про-
галин, які перешкоджають створенню цілісної сис-
теми екологічного моніторингу

Існуючі системи працюють ізольовано: ГІС-
системи обробляють просторові дані, а системи 
документообігу – текстові. Відсутній механізм авто-
матичного «семантичного містка», який би пов’язу-
вав аномалію на карті (наприклад, червоний піксель 
індексу NDCI) з контекстом (наприклад, науковим 
звітом про сезонне цвітіння діатомових водоростей 
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у цьому регіоні). Це призводить до того, що екологи 
змушені вручну співставляти різнорідну інформа-
цію, втрачаючи час.

Системи моніторингу часто видають «сирі» дані 
(графіки, таблиці), які потребують інтерпретації. 
Генерація текстових звітів за допомогою звичайних 
LLM несе ризики дезінформації. Не вирішено задачу 
створення системи, яка б генерувала екологічні 
висновки з жорсткою прив’язкою до нормативних 
документів та наукових джерел, забезпечуючи про-
зорість прийняття рішень.

Новизна. Вперше запропоновано архітектуру 
гібридної системи екологічного моніторингу, яка 
базується на мультимодальному підході – інтеграції 
візуального аналізу супутникових даних за допо-
могою Vision Transformers та семантичного аналізу 
текстових даних за допомогою RAG. Це дозволяє 
перейти від простої фіксації екологічних змін до їх 
автоматизованої інтерпретації та пояснення.

Обґрунтовано доцільність використання Vision 
Transformer (ViT) для моніторингу внутрішніх вод 
України. Показано, що механізм глобальної уваги 
(Self-Attention) є більш ефективним за локальні 
згортки CNN для задач сегментації протяжних річ-
кових об’єктів та детекції змін у складних ландшаф-
тних умовах (наприклад, при осушенні Каховського 
водосховища), забезпечуючи кращу збереженість 
топологічної структури гідромережі.

Методологічне або загальнонаукове значення. 
Методологічне значення роботи полягає у форму-
ванні нового підходу до побудови інформаційно-а-
налітичних систем в екології, який базується на 
принципах Data-Driven Science(науки, що керується 
даними). Запропонована архітектура є універсаль-
ною і може бути масштабована для моніторингу 
інших компонентів довкілля (лісів, ґрунтів, атмос-
ферного повітря) або адаптована для інших геогра-
фічних регіонів.

Загальнонаукове значення полягає у поглибленні 
розуміння можливостей трансформерних нейроме-
реж для обробки геопросторових даних. Дослідження 
робить внесок у розвиток теорії «Explainable AI» 
(пояснюваного штучного інтелекту) у застосуванні 
до наук про Землю, демонструючи шляхи підви-
щення довіри користувачів до результатів роботи 
автоматизованих систем через механізми верифіка-
ції джерел. Крім того, робота сприяє стандартиза-
ції методів оцінки екологічних збитків від воєнних 
дій, пропонуючи об’єктивні цифрові інструменти 
замість суб’єктивних експертних оцінок.

Викладення основного матеріалу. Оскільки 
система знаходиться на етапі проєктування, основний 
матеріал статті присвячено обґрунтуванню вибору 
технологій, опису архітектури та моделюванню сце-
наріїв її використання. Запропонована система скла-
дається з трьох взаємопов’язаних модулів: модуля 
збору та попередньої обробки даних (Data Ingestion), 
модуля інтелектуального аналізу зображень (Vision 

Intelligence) та модуля семантичної інтерпретації 
(Semantic Intelligence).

Фундаментом системи є дані дистанційного 
зондування Землі. Основним джерелом обрано 
супутники Sentinel-2A/2B європейської програми 
Copernicus. Вибір зумовлений оптимальним балан-
сом характеристик для моніторингу внутрішніх вод.

На відміну від Landsat (періодичність 16 днів), 
угруповання з двох супутників Sentinel-2 забезпечує 
періодичність зйомки 5 діб на екваторі і 2–3 доби 
у широтах України, що є критичним для фіксації 
швидкоплинних процесів (паводки, розливи нафто-
продуктів). Мультиспектральний інструмент (MSI) 
має 13 спектральних каналів [6]. Для моніторингу 
води критично важливими є:

•	 Видимий діапазон (VIS) – B2 (Blue, 490 нм), 
B3 (Green, 560 нм), B4 (Red, 665 нм) – роздільна 
здатність 10 м. Використовуються для оцінки прозо-
рості та кольоровості води.

•	 Червоний край (Red Edge) – B5 (705 нм), 
B6 (740 нм), B7 (783 нм) – роздільна здатність 
20 м. Унікальна особливість Sentinel-2, відсутня 
у Landsat-8. Цей діапазон є чутливим до флуорес-
ценції хлорофілу, що дозволяє точно детектувати 
цвітіння водоростей [6].

•	 Ближній інфрачервоний (NIR) – B8 (842 нм) – 
10 м. Використовується для чіткого виділення меж 
води та суші (вода поглинає NIR, рослинність відби-
ває).

Система автоматично розраховує набір індексів, 
які слугують вхідними ознаками (features) для ней-
ромережі.

Нормалізований диференційний індекс хлоро-
філу (NDCI). Призначений для оцінки біопродук-
тивності водойм. Висока концентрація хлорофілу 
викликає пік відбиття біля 700 нм [7].

Формула розрахунку NDCI має вигляд:
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де	 Rrs (705) – коефіцієнт спектральної яскраво-
сті (Remote Sensing Reflectance) на довжині хвилі 
705 нм. У Sentinel-2 це відповідає каналу Band 5 (Red 
Edge 1);
	 Rrs (665) – коефіцієнт спектральної яскравості 
на довжині хвилі 665 нм. У Sentinel-2 це відповідає 
каналу Band 4 (Red).

Хлорофіл має пік поглинання в районі 665 нм 
(що знижує відбиття в каналі B4) та пік розсіювання 
(флуоресценції) в районі 700–710 нм (що підвищує 
відбиття в каналі B5). Нормалізована різниця дозво-
ляє нівелювати вплив атмосфери та зміни освітле-
ності, виділяючи саме біологічний сигнал. Значення 
NDCI корелюють з концентрацією хлорофілу – вищі 
значення вказують на інтенсивніше цвітіння води.

Каламутність води, спричинена наявністю зави-
слих твердих частинок (мул, пісок, детрит), є іншим 
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критичним параметром, особливо в контексті оцінки 
наслідків паводків або руйнування ГЕС.

Формула розрахунку NDTI має вигляд:

	  .Red Green
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Для сенсора Sentinel-2 (MSI) формула адапту-
ється наступним чином:
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де	 B4 – канал червонного спектра (Red – 665 нм);
	 B5 – канал червонного спектра (Green – 665 нм).

У чистій воді світло зеленого діапазону проникає 
глибше і розсіюється краще, ніж червоне, яке швидко 
поглинається. Тому для чистої води RGreen  >  RRed, 
і NDTI набуває від’ємних значень. При збільшенні 
концентрації завислих речовин посилюється розсію-
вання в червоній області спектра, і RRed починає зро-
стати швидше за RGreen, зміщуючи значення індексу 
в позитивну сторону[8]. Це дозволяє відстежувати 
шлейфи забруднення та переміщення осадових мас.

У Таблиці 1 наведено зведені характеристики 
каналів Sentinel-2, що використовуються в розробле-
ній методології. Важливо зазначити, що для корек-
тного розрахунку індексів необхідно проводити 
атмосферну корекцію (перехід від рівня L1C Top-
of-Atmosphere до L2A Bottom-of-Atmosphere), що 
здійснюється за допомогою алгоритму Sen2Cor або 
аналогів.

Застосування каналу B5 (Red Edge) вимагає попе-
редньої процедури ресемплінгу (зміни розмірності) 
до 10 м, щоб відповідати роздільній здатності каналу 
B4. Це здійснюється методами білінійної інтерпо-
ляції або найближчого сусіда на етапі попередньої 
обробки даних.

Традиційні підходи до аналізу супутникових 
знімків базувалися на попіксельній класифікації або 
використанні згорткових нейронних мереж (CNN). 
Однак CNN мають обмежене рецептивне поле 

(receptive field), що ускладнює врахування глобаль-
ного контексту – наприклад, розпізнавання річки та 
схожого за спектром затопленого кар’єру, що зна-
ходяться в різних частинах знімка. Для подолання 
цього обмеження у дослідженні застосовано архітек-
туру Vision Transformer (ViT).

Архітектура ViT, вперше представлена 
Dosovitskiy et al. (2021), базується на механізмі само 
уваги (Self-Attention), який дозволяє моделі аналі-
зувати взаємозв’язки між усіма частинами зобра-
ження одночасно, незалежно від відстані між ними. 
Це критично важливо для гідрологічного аналізу, 
де стан водної поверхні в одній точці (наприклад, 
дамба) впливає на стан об’єктів за десятки кіломе-
трів (наприклад, заплава) [9].

Зображення x ∈ RH × W × C розбивається на послі-
довність патчів (фрагментів) фіксованого розміру 
(наприклад, 16 на 16 пікселів) [10]. Кожен патч ліне-
аризується у вектор і проходить через процедуру 
«embedding», отримуючи позиційне кодування, щоб 
модель знала його розташування в оригінальному 
зображенні.

Основою ViT є обчислення матриці уваги. Для 
кожного вхідного вектора (патча) формуються 
три вектори: Запит (Query – Q), Ключ (Key – K) та 
Значення (Value – V). Ці вектори отримуються шля-
хом множення вхідного вектора X на відповідні нав-
чувані матриці ваг WQ, WK, WV.

Функція уваги обчислюється за формулою Scaled 
Dot-Product Attention:

	 ( ), , ,
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де	 QKT – скалярний добуток запитів на ключі, що 
визначає ступінь подібності (важливості) одного 
патча для іншого;
	 dk – розмірність векторів ключів. Ділення на 

kd  необхідне для стабілізації градієнтів при нав-
чанні, оскільки при великих розмірностях скалярний 

Таблиця 1
Характеристика спектральних каналів Sentinel-2 MSI, що використовуються 

для розрахунку екологічних індексів
Канал 

Sentinel-2
Центральна 

довжина хвилі (нм)
Просторова роздільна 

здатність (м) Призначення в моделі Фізичний процес

Band 3 (Green) 560 10 Розрахунок NDTI Максимум пропускання 
чистої води

Band 4 (Red) 665 10 Розрахунок NDCI та 
NDTI

Максимум поглинання 
хлорофілом

Band 5 (Red 
Edge)

705 20 Розрахунок NDCI Пік відбиття вегетації/
водоростей

Band 8 (NIR) 842 10 Маскування води 
(NDWI)

Повне поглинання 
водою

Band 11 
(SWIR)

1610 20 Видалення хмар/снігу Розрізнення фазового 
стану води
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добуток може досягати великих значень, заганяючи 
функцію softmax у зону з майже нульовим градієн-
том;
	 softmax – функція активації, яка перетворює 
отримані значення у розподіл ймовірностей (сума 
ваг дорівнює 1);
	 V – вектори значень, які зважуються отриманими 
ймовірностями для формування виходу шару.

У запропонованій системі використовується 
механізм багатоголової уваги (Multi-Head Attention – 
MSA), який дозволяє моделі фокусуватися на різних 
аспектах зображення паралельно (наприклад, одна 
«голова» уваги відстежує межі водойм, інша – тек-
стуру каламутності).

	 MSA(Q, K, V) = Concat(head1, …, head2)WO,	 (5)

де кожна headi = Attention(QW iQ, KW iK, VW iV).
Для задач екологічного моніторингу використову-

ється модифікована архітектура, що нагадує U-Net, 
але де роль енкодера виконує ViT. Енкодер витя-
гує глобальні ознаки з супутникового зображення, 
а декодер відновлює просторову роздільну здатність 
для генерації маски сегментації (класи: Вода, Суша, 
Хмари, Вегетація).Експериментальні дослідження 
2024–2025 років показують, що такі гібридні моделі 
демонструють на 9–15 % вищу точність у задачах 
детекції повеней порівняно з класичними CNN, осо-
бливо в умовах складного ландшафту.

Для інтеграції моделі у програмний комплекс вико-
ристовується формат ONNX (Open Neural Network 
Exchange), що дозволяє запускати навчену модель 
у середовищі.NET за допомогою бібліотеки Microsoft.
ML.OnnxRuntime.  Це забезпечує високу швидкість 
обробки (inference) та кросплатформеність.

Ключовою проблемою використання штучного 
інтелекту в науці є схильність генеративних моде-
лей (LLM, таких як GPT-4) до конфабуляцій або 
галюцинацій – впевненого продукування неправ-
дивих фактів.У екологічному моніторингу, де ціна 
помилки може вимірюватися здоров’ям населення, 
і це неприпустимо. Для вирішення цієї проблеми 
застосовується методологія Retrieval-Augmented 
Generation (RAG).

RAG розділяє знання моделі на дві частини:
1.	 Параметрична пам’ять – ваги самої нейроме-

режі, отримані під час попереднього навчання (розу-
міння мови, логіка, загальні знання).

2.	 Непараметрична пам’ять – зовнішня база 
знань, яка містить актуальні, верифіковані дані (нау-

кові статті, звіти моніторингу, значення спектраль-
них індексів за конкретну дату) [11].

Процес генерації звіту відбувається у 3 етапи.
Векторизація даних (Embedding) – текстові дані 

(звіти) та числові дані (значення NDCI/NDTI) пере-
творюються на багатовимірні вектори за допомогою 
моделей ебмедингу (наприклад, text-embedding-3-
small). Вектори зберігаються у спеціалізованій век-
торній базі даних (Milvus, Pinecone, qDrant).

Пошук (Retrieval) – запит користувача (напри-
клад, «Який стан води біля Нікополя?») також векто-
ризується. Система шукає у базі даних вектори, що 
є математично найближчими до вектора запиту.

Генерація (Generation) – знайдені фрагменти 
інформації (контекст) додаються до промпту 
(інструкції) для LLM. Модель отримує завдання 
сформулювати відповідь  виключно  на основі нада-
ного контексту.

Головні висновки та перспективи викори-
стання результатів дослідження. Традиційні 
методи моніторингу не здатні забезпечити адекватну 
оцінку екологічного стану водних ресурсів України 
в умовах воєнного часу та масштабних техногенних 
катастроф. Дистанційне зондування Землі є єдиною 
життєздатною альтернативою для масштабного та 
безпечного контролю.

Запропонована концепція системи, що поєднує 
глибоке навчання (Vision Transformers) та семан-
тичний пошук (RAG), дозволяє вирішити ключову 
проблему сучасної екоінформатики – перетворення 
«великих даних» на верифіковані знання. ViT забез-
печує точність візуального розпізнавання, недо-
сяжну для класичних методів, а RAG гарантує фак-
тологічну обґрунтованість висновків.

Теоретичні розрахунки та аналіз аналогічних 
досліджень дозволяють прогнозувати, що викори-
стання ViT підвищить точність сегментації водних 
об’єктів на 10–15 % порівняно з існуючими CNN-
аналогами, а застосування RAG скоротить час на 
підготовку аналітичних звітів з днів до хвилин.

Архітектурний підхід «ViT + RAG» є універсаль-
ним. Він може бути адаптований для моніторингу 
лісових пожеж (аналіз термоточок + прогнозування 
поширення вогню), оцінки деградації ґрунтів (спек-
тральний аналіз + агрохімічні звіти) або контролю за 
несанкціонованими сміттєзвалищами. Розробка може 
стати внеском України в загальноєвропейську систему 
екологічної безпеки Green Deal, демонструючи висо-
кий технологічний потенціал вітчизняної науки.
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