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This paper examines the increasing importance of artificial intelligence (Al), Internet of Things (IoT) technologies, and unmanned
systems in modern environmental monitoring, with particular attention to climate change and the growing likelihood of natural
and technogenic emergencies. As conventional monitoring practices often lack the spatial density and temporal resolution required
for timely detection of hazardous developments, the combined use of intelligent analytical tools and distributed sensing devices
offers a more reliable basis for observing dynamic environmental conditions. The study outlines the functional capabilities of these
technologies, emphasizing their contributions to data accuracy, operational continuity, and predictive assessment. Building on this
analysis, the work proposes a generalized architecture for an integrated environmental monitoring system intended to support both
long-term observations and rapid identification of emergency scenarios. The proposed structure reflects the coordinated operation of
heterogeneous [oT sensors, communication channels, and Al-driven analytical modules deployed on remote computational nodes.
Particular attention is given to the mechanisms that ensure stable data transmission, fault tolerance, and timely interpretation of sensor
signals under variable environmental and infrastructural constraints. The study also discusses several practical challenges associated
with implementing such systems, including the reliability of sensor networks, the adaptability of Al models to changing environmental
regimes, and the necessity of maintaining transparent and accountable analytical processes. The conclusions highlight the advantages
of integrating Al and IoT within a unified monitoring framework and identify promising directions for further research aimed at
enhancing system resilience, analytical robustness, and scalability across different categories of industrial and environmental facilities.
Key words: climate change, man-made and natural emergencies, environmental monitoring system, artificial intelligence, Internet of
Things, unmanned systems.

Hogi TexHoJ10Tii 1711 MOHITOPUHTY 3MiHHM KJIiMaTy: nepcneKkTHBH Ta npodjemu 3acrocyBanHs LI, IoT Ta 6e3ninoTHux cucrem.
AunekceeBa A. O., Bitokons A. O.

Y poGoTi po3IIAIAETHCS 3pOCTalyua BaXKIIUBICTh 3aCTOCYBaHHS TEXHONOTiH mTy4Horo iHTenekty (LUI), Intepuery peueit (IoT) Ta
0E3MIJIOTHUX CUCTEM Y CY4aCHOMY MOHITOPHHTY HAaBKOJIMIIHBOTO CEPEAOBHILA, 3 OCOOIMBOIO YBAro 10 MPOILECiB 3MiHH KJIIMATy Ta
3pOCTaKU0i HMOBIPHOCTI MPUPOTHHUX Ta TEXHOTCHHUX HA3BUYAHHKUX CUTYaIliil. OCKUIbKH TPAAUIiiiHI METOAN MOHITOPHHTY 4aCcTO HE
MAaIOTh IPOCTOPOBOI IITBHOCTI Ta 4aCOBOI PO3ALIBHOT 3/IATHOCTI, HEOOXITHUX JIJIsl CBOEYACHOTO BUSIBIICHHSI HEOC3MEUHUX MO, KOM-
OiHOBaHE BUKOPUCTAHHS 1HTEIEKTYAIbHIX aHAMITHYHUX IHCTPYMEHTIB Ta PO3MOAIICHUX 30HAYBAJIBLHUX MPUCTPOIB MPOIIOHYE OiTbIT
HaAiiHY OCHOBY JUISl CIIOCTEPEKECHHS 32 TUHAMIYHUMH YMOBaMH HAaBKOJIMIIHBOTO CEPEIOBHUILA. Y JOCTIKEHH] OKpecaeHo (yHKIIio-
HAJIbHI MOXJIMBOCTI IIUX TEXHOJIOTIH, MIAKPECITIOIOUHN TXHil BHECOK y TOUHICTh JaHUX, OC3MePEPBHICTE POOOTH Ta MPOTHO3HY OLIIHKY.
Cnmparounch Ha [eH aHali3, y poOOoTi MPONOHYETHCS y3arajJbHEeHa apXiTeKTypa IHTerpOBaHOI CHCTEMH MOHITOPUHTY HaBKOJIMIITHBOTO
CepeOBHIIA, MPU3HAYCHOT JUIsl MiATPUMKH SIK JOBTOCTPOKOBHX CIIOCTEPEIKEHb, TAK 1 IIBUAKOI iIeHTH(IKAI] CieHapiiB Ha/[3BUYaHIX
cuTyauiil. 3anpornoHOBaHa CTPYKTypa BioOpaskae CKOOPJHHOBaHY poOOTy reTeporeHHrX AaTdukiB [oT, kaHamiB 3B°sI3Ky Ta aHATITHY-
HHUX MoayiiB Ha ocHOBI I1II, po3ropHyTHx Ha BinaneHHX 00YHMCIIIOBAIBHUX By3iax. OcoOiinBa yBara MpuaUIIEThCS MeXaHi3MaMm, 1110
3a0e3MeuyroTh CTablIbHY Tiepeady JaHX, BiIMOBOCTIHKICTh Ta CBOEYACHY IHTEPIIPETAIliF0 CUTHAIB JATYMKIB 32 3MIHHUX €KOJIOTIY-
HUX Ta IHQPACTPYKTYPHUX OOMEKEHB. Y MOCHIHKECHHI TAaKOK 0OTOBOPIOETHCS KiJIbKA IPAKTUYHUX MTPOOIIEM, OB’ I3aHKX 13 BIPOBAJI-
JKCHHSIM TaKHX CHCTEM, BKIIIOUAIOYH HAIHHICTh CECHCOPHUX MEPEXK, aJallTUBHICTh MOZEIEH IITYYHOTO IHTEIEKTY 10 3MIHHHUX PEXKHUMIB
HABKOJHIITHHOTO CEPEIOBHINA Ta HEOOXIHICTh M ATPUMKH MPO30PUX Ta MiA3BITHUX aHATITHYHUX MPOIICCiB. BUCHOBKHU MiAKPECIIOIOThH
nepesary interpauii I Ta IoT B equHy cncreMy MOHITOPHHTY Ta BH3HA4alOTh IIEPCIEKTHBHI HAIIPSIMKH IOJAIBIINX JOCIIJDKCHB,
CIPSIMOBAaHMX Ha MiABHUIICHHS CTIHKOCTI CHCTEMH, aHATITUYHOI HAJAIHHOCTI Ta MacIITabOBaHOCTI B PI3HUX KATETOPISAX MPOMHCIOBUX
Ta EKOJIOTiYHUX 00’€KTiB. Knouo6i crosa: 3MiHa KiliMary, TEXHOTCHHI Ta MPUPOIHI HAA3BUYAiHI CHUTYyalii, cCHCTeMa MOHITOPHHTY
HABKOJIMIITHHOTO CEPEIOBHUIIIA, IITYYHHUI 1HTEICKT, [HTEpHET peycii, Oe3MiIOTHI CHCTEMH.
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Introduction. The growing severity of climate
change continues to reshape ecological systems, socio-
economic structures, and global security landscapes [1].
Addressing this multifaceted phenomenon requires not
only effective policy and mitigation strategies but also
robust, scalable, and adaptive environmental monitoring
systems. Traditional observation methods, such as
satellite imagery and ground-based meteorological
stationsm, have played a critical role in climate
assessment. Yet, they often lack sufficient spatial
granularity, suffer from delays in data acquisition, and
face limitations in remote or inaccessible areas.

Recent technological advancements offer new
possibilities for real-time, data-driven environmental
surveillance. Artificial intelligence, the Internet of
Things, and unmanned systems, particularly drones and
autonomous sensor platforms, are gaining attention as
key components of next-generation climate observation
infrastructures. These technologies enable the collection
of high-resolution environmental data, dynamic
interpretation of complex patterns, and early detection
of anomalous climate-related behaviors.

This study investigates the emerging role of Al, IoT,
and unmanned systems (aerial, land, underwater and
surface) in environmental monitoring of climate change,
natural and man-made emergencies. It highlights
the potential contributions of these technologies to
environmental data collection and interpretation,
explores practical and ethical limitations of their
deployment, and identifies critical challenges associated
with their integration. Through this analysis, we aim to
outline a future-oriented framework that supports more
responsive, granular, and intelligent climate monitoring
solutions.

Literature review and problem statement. A broad
spectrum of methods, tools, and integrated technological
systems has been developed for now to enhance
the monitoring of climate change, natural and man-
made disasters, as well as to improve early detection
of both natural and anthropogenic hazards [2-4].
Traditional approaches to monitoring climate change
and environmental hazards have relied primarily on
systematic field observations and classical geophysical
and meteorological instruments [5]. Ground-based
weather stations, ocean buoys, hydrological gauges,
and seismic detectors provided long-term records of
temperature, precipitation, ocean dynamics, and tectonic
activity, forming the backbone of early environmental
monitoring [6—8]. These data sources were complemented
by standardized sampling in climatology and ecology,
as well as historical archives, such as station logs,
maritime records, and paleoclimatic evidence from tree
rings or ice cores, that helped trace environmental shifts
over extended timescales. Although limited in spatial
coverage and resolution, these traditional methods
established the essential empirical foundation for
understanding climatic variability and natural disaster
dynamics.

Recent years have witnessed the rapid emergence of
advanced technological approaches for environmental
and climate monitoring, driven by the expanding
capabilities of the Internet of Things, artificial
intelligence, and unmanned systems [9—11]. loT-based
sensor networks enable continuous, high-resolution
observation of atmospheric, hydrological, and ecological
parameters across vast and previously inaccessible
regions [12]. These interconnected devices generate
streams of real-time data, significantly improving the
timeliness and precision of environmental assessments.
Complementing these systems, Al methods, including
machine learning, deep learning, and advanced data
assimilation techniques, allow for the automated
processing of massive heterogeneous datasets, enabling
early detection of anomalies, improved prediction of
extreme events, and more reliable interpretation of
complex environmental dynamics [13]. Unmanned
aerial, terrestrial, and maritime platforms further enhance
monitoring capabilities by providing flexible, rapid-
deployment tools for surveying hazardous or remote
locations, capturing detailed imagery, and performing
measurements that ground-based systems cannot easily
obtain [6].

Despite these advances, most modern monitoring
tools are still implemented as isolated solutions designed
for specific, narrow tasks rather than as components
of a unified global system. This fragmentation limits
the broader analytical potential that could be achieved
through their coordinated use. The challenge of
integrating loT infrastructures, Al-driven analytics,
and unmanned systems into cohesive, interoperable
monitoring architectures remains largely unresolved.

Therefore, the aim of this paper is to examine and
analyze the distinctive features, strengths, and limitations
of each of these technologies when applied individually,
and to explore the prospective benefits and expanded
analytical capabilities that might arise from their
combined use in addressing large-scale environmental
and climate-related challenges.

Emerging technologies for climate change and
emergencies monitoring systems. The integration
of cutting-edge technologies into environmental
monitoring frameworks is redefining the capabilities of
climate observation systems. Among the most impactful
innovations are artificial intelligence, the Internet of
Things, and unmanned systems. Each contributes
uniquely to enhancing the spatial resolution, temporal
responsiveness, and analytical depth of environmental
data acquisition and interpretation.

Artificial Intelligence. Al serves as the analytical core
of modern climate monitoring infrastructures, enabling
systems to process massive volumes of heterogeneous
data, detect subtle environmental changes, and generate
actionable insights [13]. Central to this functionality is
the use of artificial neural networks (ANNs) and their
specialized architectures. For spatiotemporal pattern
recognition in satellite and drone imagery, convolutional
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neural networks (CNNs) are employed to classify land
cover, identify vegetation loss, and detect glacial retreat.
When dealing with sequential environmental data such as
temperature or gas concentration trends, recurrent neural
networks (RNNs) and more advanced long short-term
memory (LSTM) models are applied to forecast climate
variables and identify anomalies [9, 14]. Autoencoders
are useful in unsupervised learning contexts, allowing
systems to compress and reconstruct environmental
datasets for anomaly detection or dimensionality
reduction. Furthermore, graph neural networks
(GNNs) are gaining relevance for modeling climate
impacts across interconnected geographic regions and
ecosystems. These models collectively support high-
resolution environmental diagnostics and predictive
analytics far beyond the capacity of conventional tools.

Internet of Things. 1oT technologies enable
the deployment of extensive sensor networks that
continuously collect environmental data across diverse
terrains and climate zones [10]. These interconnected
devices measure microclimatic variables such as
ambient temperature, relative humidity, soil moisture,
solar radiation, wind velocity, and concentrations
of greenhouse gases like CO., CHa4, and NOy [15].
LoRaWAN and NB-IoT protocols allow for long-
range, low-power communication between sensors
and central data hubs, facilitating monitoring even in
remote or infrastructure-sparse regions. The distributed
nature of [oT systems supports real-time observation of
environmental conditions and enhances the granularity
of climate data at both local and regional scales. The
combination of low-cost sensor nodes with edge
computing capabilities further enables local data
preprocessing and intelligent event filtering prior to
cloud-based analysis.

Unmanned Systems. Unmanned platforms extend the
reach and precision of environmental data collection by
accessing areas that are either hazardous or logistically
impractical for human observers [6, 16, 17]. These
systems can be classified based on their operational
domains.

Aerial unmanned vehicles (UAV), such as fixed-wing
and multirotor drones, are employed for high-resolution
mapping of land surface temperature, vegetation indices
(e.g., NDVI), and snow cover extent. They can also carry
gas analyzers and spectrometers to detect emissions and
surface pollution.

Unmanned ground-based vehicles (UGVs) are
utilized in harsh or contaminated terrains to deploy
sensors, collect soil samples, and track land degradation.
Equipped with machine vision and robotic arms, UGVs
are increasingly used in precision agriculture and
desertification studies.

Unmanned surface aquatic systems (USVs) operate
onrivers, lakes, and oceans to monitor water temperature,
pH, turbidity, and pollutant levels. These platforms are
especially effective in assessing eutrophication, harmful
algal blooms, and thermal pollution. In turn, underwater

unmanned vehicles (UUVs) are critical for exploring
submerged ecosystems, mapping coral bleaching zones,
and measuring ocean acidification. They often rely on
sonar, chemical sensors, and fluorometers to capture
data in real time.

Integration Scenarios. The combined deployment of
Al IoT,and unmanned systems yields synergistic benefits
for climate monitoring. For example, an IoT-enabled
sensor network can detect rising ground temperatures in
a vulnerable region, then this anomaly triggers a drone
flight to collect high-resolution thermal and spectral
imagery. Subsequently, AI models analyze the data to
identify early signs of drought stress or fire risk. Similarly,
coordinated fleets of drones and autonomous boats,
guided by Al-driven navigation systems, can be used to
assess glacial meltwater contributions to sea-level rise
in polar regions. Through such integrative frameworks,
emerging technologies provide not only richer and more
accurate data, but also the ability to respond adaptively
to dynamic environmental conditions.

Moreover, smart sensors, distributed across critical
infrastructure within an industrial enterprise, can be
effectively employed to monitor operational conditions
and prevent man-made accidents. By continuously
transmitting real-time data on the status of key equipment
and signaling when operational parameters exceed
predefined thresholds, these sensors supply intelligent
control and decision support systems with the information
needed for rapid situation assessment and the formulation
of appropriate managerial responses. Such analytical
platforms may include, for example, fuzzy-logic-based
decision support systems, as demonstrated in study [18].
The connection between distributed sensors and higher-
level analytical modules is enabled by Internet of Things
technologies, which ensure reliable communication and
seamless data integration. Moreover, various intelligent
methods can be applied not only for monitoring but also
for the synthesis and optimization of control systems
themselves, as illustrated in papers [19] and [20].

Opportunities and benefits. The integration of
artificial intelligence, Internet of Things technologies,
and unmanned systems into climate change and natural
and man-made emergencies monitoring presents
transformative opportunities across multiple dimensions.
These technologies enhance both the technical precision
and operational flexibility of environmental observation
frameworks, enabling a shift from reactive assessments
to proactive, predictive, and geographically extensive
surveillance.

The first important advantage is the enhanced
spatiotemporal resolution. Conventional monitoring
networks often operate at coarse spatial and temporal
resolutions, limiting the granularity of climate impact
assessments. Unmanned aerial and aquatic systems,
equipped with multispectral cameras and environmental
sensors, provide centimeter-level resolution data with
customizable flight schedules. In parallel, IoT sensor
networks deliver continuous data streams from fixed
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or mobile stations, filling observational gaps and
supporting near-real-time updates. These capabilities
are particularly valuable in regions with fragmented
infrastructure, such as mountainous terrain, wetlands, or
polar zones.

The second benefit is the intelligent data interpretation
and forecasting of such systems. Al-powered models
facilitate the extraction of actionable insights from vast
and heterogeneous environmental datasets. Rather than
relying solely on manual interpretation or statistical
analysis, neural networks can recognize complex
nonlinear relationships among climate variables. This
enables more accurate forecasting of temperature
fluctuations, precipitation anomalies, or extreme
weather events. Furthermore, Al systems support
change detection algorithms that can autonomously
identify environmental degradation, land cover shifts, or
urban heat island formation, empowering early warning
mechanisms and timely intervention.

The next no less important advantage is the
scalability and modularity. One of the key advantages
of emerging technologies is their scalability. Sensor
nodes can be incrementally deployed across regions
without the need for major infrastructure investment.
Unmanned systems are modular in design, allowing
mission-specific payloads (e.g., gas analyzers, thermal
imagers, hyperspectral sensors) to be integrated based
on operational objectives. This modularity ensures
adaptability to evolving monitoring needs and facilitates
tailored deployments in urban, rural, or coastal contexts.

Another benefit that can be gained is the cost
efficiency and operational accessibility. Compared
to satellite launches or large-scale ground-based
monitoring stations, loT devices and UAVs offer
more affordable and accessible solutions, especially
for developing countries. Off-the-shelf drones and
open-source sensor platforms enable localized climate
observation programs with minimal technical overhead.
Their autonomous or semi-autonomous nature reduces
labor requirements and enhances safety when operating
in hazardous environments.

And the last advantage is the support for climate-smart
decision making. By combining real-time observations
with predictive analytics, these technologies empower
data-driven climate governance. Urban planners can use
Al-interpreted heat maps for designing climate-resilient
infrastructure; agricultural stakeholders can monitor
drought risks through UAV-enabled NDVI analysis;
coastal authorities can predict storm surge threats using
sensor-driven early warning models. This information
supports not only adaptation and mitigation planning but
also public awareness and education.

Drawing wupon the analysis presented above,
it becomes possible to outline the structure of a
generalized monitoring system designed for observing
climate change as well as detecting natural and man-
made emergencies. The conceptual architecture of this
system, proposed by the authors, is illustrated in Fig. 1,

where the corresponding notation is provided: UML —
upper monitoring level; LML — lower monitoring level,
SMS (L/S/U) — stationary measuring station (land/
surface/underwater); LUV — land unmanned vehicle;
UAV — unmanned aerial vehicle; UWC (S/U) —
unmanned watercraft (surface/underwater); X, — vector
of environmental variables measured using the i-th
measuring station (stationary or mobile), i =1, 2, ..., n;
U, — vector of sensor output signals transmitted to data
recording and storage devices, i = 1, 2, ..., n; U, —
vector of signals of processed information transmitted
to wireless data transmission devices, i = 1, 2,..., n;
Uep; — vector of signals of compressed and processed
information from measuring stations, transmitted via
the Internet to the upper level of the monitoring system,
i=1,2,...,n; Uy, —vector of signals of all environmental
information transmitted via the Internet from measuring
stations to the upper level of the monitoring system;
U ,zzs— vector of output signals of the intelligent anomaly
and emergency recognition system; U,, — vector
of output signals of the intelligent decision support
system; Y,,,c — vector of adjustable parameters for the
intelligent anomaly and emergency recognition system;
Y,ss — vector of adjustable parameters for the intelligent
decision support system.

The system follows a hierarchical organization
comprising two principal monitoring levels: a lower
(data acquisition) level and an upper (analytical and
management) level.

The lower level is formed by a distributed network of
stationary and mobile measuring stations equipped with
an array of sensors that capture critical environmental
parameters indicative of ongoing or emerging climatic
shifts and potential emergency conditions. These
parameters may include atmospheric temperature,
humidity, barometric pressure, wind characteristics,
soil moisture, water pH and conductivity, radiation
background levels, CO,, CH,, and NO, and other
physical or chemical indicators essential for assessing
environmental stability. Each station incorporates
modules for local data storage, preliminary processing,
and event logging, along with a communication
interface for wireless transmission of measurements
through internet-based channels to the upper-level
monitoring system. Stationary measuring stations may
be deployed on land, positioned on surface platforms,
or anchored underwater to ensure comprehensive spatial
coverage. Mobile stations, in turn, are mounted on
ground-based unmanned vehicles or robotic platforms,
aerial unmanned systems, and autonomous or remotely
operated surface and underwater vessels, thereby
enabling flexible, adaptive monitoring in dynamic or
inaccessible environments.

The wupper level of the proposed monitoring
architecture incorporates a suite of intelligent components
responsible for the interpretation of incoming data, the
recognition of hazardous conditions, and the support
of informed human decision-making. At its core lies
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Fig. 1. Functional structure of the generalized hierarchical system for environmental monitoring of climate change

and emergencies based on Al,

an intelligent system for detecting anomalies and
identifying potential or ongoing emergency situations.
This subsystem may be implemented using various
neural network models trained on extensive datasets
that reflect a wide range of environmental states and
emergency scenarios. By processing multidimensional
vectors of signals originating from heterogeneous
sensors at the lower level, the recognition module
is capable of distinguishing normal environmental
dynamics from signatures indicative of approaching or
existing natural or man-made disasters. Upon detecting
such conditions, it generates corresponding alerts and
transmits them to the intelligent decision support system
for further analysis.

The intelligent decision support system, also hosted
at the upper tier, provides the human operator with
analytically grounded recommendations tailored to
the current operational context. Drawing on expert
rules, implemented based on fuzzy logic methods, this
subsystem assists in selecting appropriate response
strategies, thereby increasing the accuracy, timeliness, and
reliability of human decisions. The interaction between
the operator and the entire monitoring infrastructure is
facilitated by a human-machine interface that presents

IoT and unmanned vehicles

processed information in a clear and accessible form.
This interface can be deployed on various remote
devices connected to the internet, including personal
computers, tablets, and mobile devices, enabling flexible
and convenient supervision of environmental conditions
regardless of the operator’s location. In turn, the
anomaly-recognition and decision-making modules are
situated on a high-performance remote server, ensuring
adequate computational resources for real-time data
processing and analysis.

A system built upon such a generalized architecture
can be effectively adapted for a wide spectrum of
applications. Its modularity and scalability allow it to
function with equal efficiency when deployed within
a single industrial enterprise for internal emergency
monitoring and ecological assessment, as well as across
larger territorial units such as districts, cities, or other
administrative or geographic regions.

Next, we will consider the limitations and the
inherent challenges that may arise when employing Al
technologies, loT infrastructures, and unmanned systems
in advanced environmental monitoring applications.

Challenges and Limitations. Despite their
transformative potential, the integration of AI, IoT,
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and unmanned systems into climate monitoring
frameworks presents a number of practical, technical,
and ethical challenges. These limitations must be
critically addressed to ensure reliability, scalability, and
responsible deployment of such technologies in diverse
environmental and socio-political contexts.

Infrastructure and connectivity constraints. Many of
the regions most vulnerable to climate change, such as
remote islands, mountainous zones, or politically unstable
territories, lack the digital infrastructure required to support
dense IoT networks or consistent operation of unmanned
systems. Limited access to stable electricity, mobile
networks, or satellite communications restricts real-time
data transmission and sensor coordination. In addition,
poor maintenance and harsh environmental conditions can
lead to frequent hardware failures or data loss in the field.

Energy dependence and hardware limitations. The
autonomous operation of drones, surface vehicles,
and sensor nodes heavily depends on battery life and
energy efficiency. Extended missions in isolated areas
often require complex logistical planning, such as solar-
powered charging systems or swappable batteries. Sensor
payloads may also face limitations in size, sensitivity,
or calibration accuracy, affecting the consistency and
reliability of collected data, particularly in extreme
temperature or humidity conditions.

Data management and computational load. The
integration of multimodal data streams, imagery,
telemetry, time-series sensor logs, poses challenges
for storage, transmission, and analysis. Real-time
processing of high-frequency data, especially from video
feeds or hyperspectral sensors, demands significant
computational resources, often beyond the capabilities
of local edge devices. Although cloud computing offers
scalability, data latency, cost, and privacy considerations
must be balanced. Moreover, heterogeneous data
formats and a lack of standardized protocols can hinder
interoperability between devices and systems.

Algorithmic transparency and model bias. While
Al models offer unprecedented predictive capabilities,
their “black-box” nature often reduces interpretability.
Climate policy decisions based on Al-generated insights
may face scrutiny if model logic is not transparent
or explainable. Additionally, biases in training data,
stemming from geographic or temporal gaps, can result
in skewed outputs or inaccurate forecasts. In high-stakes
applications, such as disaster response or emissions
regulation, such biases may lead to misinformed
decisions or resource misallocation.

Ethical and legal considerations. The use of
unmanned aerial or ground systems for environmental
surveillance raises ethical questions about data
ownership, privacy, and sovereignty. In regions with
indigenous communities or contested territories, climate
monitoring may unintentionally infringe upon local
rights or be perceived as external intrusion. Furthermore,
regulatory ambiguity in the deployment of drones
or data collection sensors complicates cross-border
collaboration and long-term monitoring efforts.

Conclusions. The convergence of artificial
intelligence, Internet of Things, and unmanned
systems is reshaping the landscape of environmental
monitoring of climate change, natural and man-made
emergencies by enabling more dynamic, precise, and
intelligent observation of environmental systems. These
technologies offer a multidimensional advantage over
conventional methods by extending spatial coverage,
improving temporal resolution, and unlocking data-
driven insights through automated analysis and
forecasting. Their application enhances the ability to
detect early signals of ecological degradation, assess
regional vulnerabilities, and inform climate-responsive
decision-making.

However, the deployment of these technologies
is not without limitations. Challenges related to
infrastructure, energy consumption, data integration,
algorithmic transparency, and regulatory ambiguity
continue to hinder their full-scale adoption. Addressing
these issues requires coordinated efforts from engineers,
data scientists, environmental experts, policymakers,
and local communities to ensure equitable, ethical,
and sustainable implementation. Looking ahead, future
research should focus on improving the robustness and
interoperability of sensor networks, developing energy-
efficient Al algorithms suitable for edge computing,
and establishing international frameworks for data
governance and system standardization. Advances
in neuromorphic computing, federated learning, and
autonomous swarm coordination among unmanned
systems hold particular promise for expanding the
scalability and responsiveness of climate monitoring
operations. Ultimately, the integration of emerging
technologies into environmental observation is not
merely a technical innovation, it represents a paradigm
shift toward more proactive, adaptive, and collaborative
approaches to understanding and confronting the
complex realities of global climate change as well as
natural and man-made emergencies.
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